Was versteht man eigentlich unter künstlicher Intelligenz? Marvin Minsky, der Gründer des MIT AI Laboratory, beschrieb sie wie folgt: «Artificial Intelligence is the science of making machines do things that would require human intelligence if done by men.» Für Banken ergeben sich im Wesentlichen zwei Anwendungsfelder von Artificial Intelligence. Dazu gehört einerseits das Generieren neuer Erkenntnisse aus bereits vorhandenen und neuen Daten, andererseits die intelligente Automatisierung von Prozessen.
Generierung neuer Erkenntnisse im Banking
Neue Erkenntnisse können in drei Bereichen anfallen: Im Umfeld des Kunden oder der Bank sowie aus Sicht des Marktes. Personalisierte Angebote und Kundenansprache sind ein Beispiel für den Effekt einer immer feineren Segmentierung, die durch die Analyse von Transaktions- und sonstigen Kundendaten über die Kundenbasis hinweg ermöglicht wird. Für die Bank kann die Nutzung physischer (z. B. Filialen, Geldautomaten) und personeller Ressourcen analysiert werden, um den Ressourceneinsatz zu optimieren, darunter zum Beispiel die Planung von Filialstandorten oder -belegung, die Automatenbefüllung und die Eruierung der kürzesten Routen zwischen den Automaten oder die Optimierung von Arbeitsabläufen. Bei Massnahmen zur Analyse von Mitarbeiterverhalten ist natürlich gebührende Vorsicht geboten, um keine Überwachungskultur aufkommen zu lassen.
Ein Beispiel, wie eine solche Analyse Mitarbeiter unterstützen kann, kommt aus dem Investmentbereich; hier können irrationale, auf menschlichen Denkfehlern basierende Investmententscheidungen identifiziert und korrigiert werden. Marktwissen spielt vor allem beim Anlegen eine wichtige Rolle. Hier kann die Analyse von strukturierten, aber vor allem auch die Erschliessung unstrukturierter Daten in Form von Zeitungsartikeln, Presseberichten und Nachrichten aus sozialen Netzwerken die Genauigkeit von Prognosen zum Beispiel zur Kursentwicklung von Wertpapieren erhöhen. Auch beim Finanzieren hilft Marktwissen durch künstliche Intelligenz in der Form verbesserter Vorhersagen zu Inflation und Wirtschaftswachstum bei Kreditvergabeentscheidungen, genauso wie vertiefte Einsichten in Zusammenhänge zwischen dem allgemeinen Zahlungsverhalten des Kreditnehmers, der Art der Sicherheiten und des Kreditausfallrisikos.
Neben verbesserter Risikoeinschätzung könnte künstliche Intelligenz Personen ohne nennenswerte Kredithistorie durch grösseres Verständnis der für eine Kreditvergabe relevanten Parameter künftig einfacher Zugang zu Kapital verschaffen, vor allem, da Algorithmen mittlerweile in der Lage sind, ihre Entscheidungsfindung zu dokumentieren. Ein weiterer Bereich, der von der Mustererkennung durch künstliche Intelligenz profitiert, ist die Betrugserkennung, sowohl intern aus Compliance-Sicht als auch extern. Ist einmal bekannt, welches Verhalten für Kunden, Mitarbeiter oder auch IT-Systeme der Norm entspricht beziehungsweise wie betrügerische Aktivitäten wie etwa Identitätsdiebstahl, Geldwäscherei, Veruntreuung oder Malware ablaufen, kann solch «abnormales» Verhalten leichter identifiziert und bekämpft werden.
Intelligente Automatisierung von Prozessen
Der Übergang zwischen der Automatisierung von Wissensgenerierung und der Automatisierung ganzer Prozesse ist in einem wissensintensiven, digitalen Umfeld wie dem Finanzsektor fliessend. Je weiter die Fähigkeit von AI, logische Denkprozesse zu vollziehen, selbstständig Verknüpfungen zwischen Daten herzustellen und diese auch noch für Menschen verständlich aufzubereiten, fortschreitet, desto mehr können Aktivitäten, die zuvor die fachliche Expertise und kommunikativen Fähigkeiten eines Mitarbeiters verlangten, automatisiert werden.
Die ersten vielversprechenden Anwendungsfelder für Automatisierung durch AI sind standardisierte, gut dokumentierte Prozesse, wie zum Beispiel die Überwachung und die Einhaltung regulatorischer Vorgaben und in einem fortgeschrittenen Stadium auch die notwendige Berichterstattung. Das Anlegen, bei dem Portfolios mit Risikoprofilen abgeglichen und Anpassungen aufgrund bestimmter Anlagestrategien vorgenommen werden, bietet sich ebenfalls zur Automatisierung an. Robo Advisor, eine der häufigsten AI-Anwendungen im Finanzbereich, können entweder Mitarbeiter intern durch regelmässige Portfolioevaluierung und Empfehlungen zur Angemessenheit bestimmter Wertpapiere unterstützen oder extern den Anlageprozess für den Endkunden in Teilen oder gesamthaft übernehmen, von der Strategie über die erste Ausführung bis hin zur Anpassung des Portfolios.
Eine weitere Anwendung, die grosses Potenzial besitzt, in der Praxis momentan allerdings noch hinter den Erwartungen zurücksteht, sind Conversational Interfaces (CIs). Diese verwenden die Sprache, das heisst Dialog in geschriebener oder gesprochener Form, zur Kommunikation zwischen Menschen und Computern. CIs lassen sich in Chatbots (Textdialog) und Voice Assistants (gesprochenen Dialog) unterteilen. Auch wenn Sprache im Grunde ebenfalls auf Regeln und Konventionen basiert, ist sie oft mehrdeutig und erfordert daher ein Verständnis von Kontext sowie ein gewisses Erinnerungsvermögen für den Verlauf einer Konversation. CIs, die mehr können sollen, als nur als eine Art erweitertes FAQ zu fungieren und Standardantworten auf eine kleine Bandbreite vordefinierter Fragen zu geben, benötigen extensives Training in ihrem Einsatzgebiet. Die Themengebiete, für die sie trainiert und eingesetzt werden können, sind allerdings unbegrenzt und umfassen sowohl interne Anwendungen, zum Beispiel als Berater für Mitarbeiter oder als IT-Support bei einfachen Anfragen, als auch externe, zum Beispiel im Kundenkontakt bei der Entlastung von Callcentern, aber auch zur Steigerung der Convenience für die Ausführung von Transaktionen oder im Idealfall als Personal Financial Manager, der Ausgaben analysiert, prognostiziert und ausführt sowie Spartipps und Warnhinweise bereitstellt.
Zurzeit dominieren zwei Arten von Artificial Intelligence den Schweizer Bankenmarkt: Conversational Interfaces (CIs) und Robo Advisors (vgl. Tabelle). Robo-Advisors beschreiben intelligente Systeme, die unter Einsatz von Algorithmen und wiederkehrend ohne menschliche Beteiligung Anlageempfehlungen für ein optimiertes Portfoliomanagement geben. Ein solches System kann die entsprechenden Empfehlungen oftmals auch automatisiert für den Kunden umsetzen. Anwendungsbereiche für die system- und algorithmisch gestützte Beratung kann man sich auch in hybrider Form für den gesamten Kundenberatungsprozess vorstellen. Reguliert werden Schweizer Banken im Bereich AI durch die Finma allerdings bisher noch nicht.
Disruptive Auswirkungen
Eine Vielzahl innovativer Technologien wie AI oder Blockchain/DLT kann sich disruptiv auf die Geschäftsmodelle in der Finanzindustrie auswirken und das bestehende Marktverständnis durch grundlegend neue Mechanismen aushebeln. Ergänzend ist hierbei die zunehmende Konvergenz der neuen Technologien zu beachten und zu verstehen. Start-ups wie Singularity-Net mit der Abbildung von AI auf der Blockchain/Distributed Ledger-Technologie machen dies vor.
Entscheidend für die erfolgreiche Implementierung innovativer Technologien ist daher neben der frühzeitigen Einbindung aller Mitarbeitenden die präzise Analyse, für welche Prozesse die verschiedenen Technologien geeignet sind und wie die damit verbundenen notwendigen Strukturanpassungen aussehen werden. Schweizer Banken fokussieren bisher auf die intelligente Automatisierung von Prozessen und nutzen die Chancen zur Gewinnung neuer Erkenntnisse eher weniger. Dies wäre aber die Voraussetzung, um einzigartiges Kundenerlebnis zu schaffen oder zumindest eine «effortless experience» zu realisieren. Die Entwicklung neuer Geschäftsmodelle auf Basis von AI ist bei den etablierten Marktteilnehmern in der Schweiz bisher nicht zu beobachten.